Using Artificial Neural Network to Monitor and Predict Induction Motor Bearing (imb) Failure

نویسندگان

  • A. K Mahamad
  • S. Saon
  • M. H Abd Wahab
  • M. N Yahya
  • M. I Ghazali
چکیده

The purpose of this paper is to develop an appropriate artificial neural network (ANN) model of induction motor bearing (IMB) failure prediction. Acoustic emission (AE) represented the technique of collecting the data that was collected from the IMB and this data were measured in term of decibel (dB) and Distress level. The data was then used to develop the model using ANN for IMB failure prediction model. An experimental rig was setup to collect data on IMB by using Machine Health Checker (MHC) Memo assist with MHC Analysis software. In the development of ANN modeling, two networks were tested; Feedforward Neural Network (FFNN) and Elman Network for the performance of training, validation and testing with training algorithm, Levenberg-Marquardt Back-propagation and the suitable transfer function for hidden node and output node was logsig/purelin combination. The results show the performance of Elman network was good compared to FFNN to predict the IMB failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

Induction Motor Electric Parameters Estimation Using Artificial Neural Networkds and its Application in industrial Load Modeling

Load modeling is widely used in power system studies. Two types of modeling, namely, static and dynamic, are employed. The current industrial practice is the static modeling. Static modelss are algebraic equations of active and reactive power changes in terms of voltage and frequency deviations. In this paper, a component based on static modeling is employed in which the aggregate model is deri...

متن کامل

Stator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network

Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...

متن کامل

Induction Motor Electric Parameters Estimation Using Artificial Neural Networkds and its Application in industrial Load Modeling

Load modeling is widely used in power system studies. Two types of modeling, namely, static and dynamic, are employed. The current industrial practice is the static modeling. Static modelss are algebraic equations of active and reactive power changes in terms of voltage and frequency deviations. In this paper, a component based on static modeling is employed in which the aggregate model is deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007